We used two kinases, c-jun N terminal kinase (JNK-1) and protein kinase C (PKC), as model enzymes to evaluate the potential of fluorescence polarization (FP) for high-throughput screening and the susceptibility of these assays to compound interference. For JNK-1 the enzyme kinetics in the FP assay were consistent with those found in a [gamma-33P]ATP filter wash assay. Determined pIC(50)s for nonfluorescent JNK-1 inhibitors were also consistent with those found in the filter wash assay. In contrast, fluorescent compounds were found to interfere with the JNK-1 FP assay, appearing as false positives, defined by their lack of activity in the filter wash assay. We also developed a second assay using a different kinase, protein kinase C, which was used to test a 5000 compound diversity set. As for JNK-1, interference from fluorescent compounds caused a high false positive rate. The Molecular Devices Corporation 'FLARe' instrument is capable of discriminating between fluorophores on the basis of their fluorescence (excited state) lifetime, and may assist in reducing compound interference in fluorescent assays. In both model FP kinase assays described here some, although not complete, reduction in interference from fluorescent compounds was achieved by the use of FLARe.