Probing the nucleotide binding domain of the osmoregulator EnvZ using fluorescent nucleotide derivatives

Biochemistry. 2002 Nov 26;41(47):13876-82. doi: 10.1021/bi020331j.

Abstract

EnvZ is a histidine protein kinase important for osmoregulation in bacteria. While structural data are available for this enzyme, the nucleotide binding pocket is not well characterized. The ATP binding domain (EnvZB) was expressed, and its ability to bind nucleotide derivatives was assessed using equilbrium and stopped-flow fluorescence spectroscopy. The fluorescence emission of the trinitrophenyl derivatives, TNP-ATP and TNP-ADP, increase upon binding to EnvZB. The fluorescence enhancements were quantitatively abolished in the presence of excess ADP, indicating that the fluorescent probes occupy the nucleotide binding pocket. Both TNP-ATP and TNP-ADP bind to EnvZB with high affinity (K(d) = 2-3 microM). The TNP moiety attached to the ribose ring does not impede access of the fluorescent nucleotide into the binding pocket. The association rate constant for TNP-ADP is 7 microM(-1) s(-1), a value consistent with those for natural nucleotides and the eucaryotic protein kinases. Using competition experiments, it was found that ATP and ADP bind 30- and 150-fold more poorly, respectively, than the corresponding TNP-derivatized forms. Surprisingly, the physiological metal Mg(2+) is not required for ADP binding and only enhances ATP affinity by 3-fold. Although portions of the nucleotide pocket are disordered, the recombinant enzyme is highly stable, unfolding only at temperatures in excess of 70 degrees C. The unusually high affinity of the TNP derivatives compared to the natural nucleotides suggests that hydrophobic substitutions on the ribose ring enforce an altered binding mode that may be exploited for drug design strategies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Bacterial Outer Membrane Proteins / chemistry*
  • Bacterial Outer Membrane Proteins / genetics
  • Bacterial Outer Membrane Proteins / metabolism
  • Binding Sites
  • Enzyme Stability
  • Escherichia coli / enzymology*
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Kinetics
  • Models, Molecular
  • Molecular Sequence Data
  • Multienzyme Complexes / chemistry*
  • Multienzyme Complexes / genetics
  • Multienzyme Complexes / metabolism
  • Nucleotides / chemistry*
  • Nucleotides / metabolism
  • Plasmids
  • Protein Kinases / chemistry
  • Protein Kinases / metabolism
  • Protein Structure, Tertiary
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Thermodynamics

Substances

  • Bacterial Outer Membrane Proteins
  • Escherichia coli Proteins
  • Multienzyme Complexes
  • Nucleotides
  • Recombinant Proteins
  • Protein Kinases
  • envZ protein, E coli