The nuclear structures that contain symmetrical dimethylated arginine (sDMA)-modified proteins and the role of this posttranslational modification is unknown. Here we report that the Cajal body is a major epitope in HeLa cells for an sDMA-specific antibody and that coilin is an sDMA-containing protein as analyzed by using the sDMA-specific antibody and matrix-assisted laser desorption ionization time of flight mass spectrometry. The methylation inhibitor 5'-deoxy-5'-methylthioadenosine reduces the levels of coilin methylation and causes the appearance of SMN-positive gems. In cells devoid of Cajal bodies, such as primary fibroblasts, sDMA-containing proteins concentrated in speckles. Cells from a patient with spinal muscular atrophy, containing low levels of the methyl-binding protein SMN, localized sDMA-containing proteins in the nucleoplasm as a discrete granular pattern. Splicing reactions are efficiently inhibited by using the sDMA-specific antibody or by using hypomethylated nuclear extracts, showing that active spliceosomes contain sDMA polypeptides and suggesting that arginine methylation is important for efficient pre-mRNA splicing. Our findings support a model in which arginine methylation is important for the localization of coilin and SMN in Cajal bodies.