The filamentous ascomycete Aspergillus nidulans produces three major siderophores: fusigen, triacetylfusarinine C, and ferricrocin. Biosynthesis and uptake of iron from these siderophores, as well as from various heterologous siderophores, is repressed by iron and this regulation is mediated in part by the transcriptional repressor SREA. Recently we have characterized a putative siderophore-transporter-encoding gene ( mirA ). Here we present the characterization of two further SREA- and iron-regulated paralogues (mirB and mirC ), including the chromosomal localization and the complete exon/intron structure. Expression of mirA and mirB in a Saccharomyces cerevisiae strain, which lacks high affinity iron transport systems, showed that MIRA transports specifically the heterologous siderophore enterobactin and that MIRB transports exclusively the native siderophore triacetylfusarinine C. Construction and analysis of an A. nidulans mirA deletion mutant confirmed the substrate specificity of MIRA. Phylogenetic analysis of the available sequences suggests that the split of the species A. nidulans and S. cerevisiae predates the divergence of the paralogous Aspergillus siderophore transporters.