In search of factors that regulate the phenotype of the peroxisomal compartment in wild-type liver parenchymal cells, we compared hepatocyte polarity to peroxisome differentiation, using adult liver as the standard. Differentiation parameters were evaluated in a three-dimensional culture model (spheroid), in 'sandwich' and monolayer primary hepatocyte cultures, and in 15.5 and 18.5-day-old foetal rat liver. Peroxisomes, studied by immunohistochemistry, enzyme histochemistry, and catalase specific activity, were better differentiated depending on foetal age (day 18.5 > day 15.5) and culture type (spheroid > sandwich > monolayer). The hepatocyte polarity markers ATP-, ADP-, and AMP-hydrolysing activities were, in all models, mislocalized at the lateral plasma membrane, whereas in contrast the multidrug resistance-associated protein 2 (mrp2) antigen was always correctly immunolocalized at the apical membrane domain. In cultures, the correct secretion of fluorescein (mrp2-mediated) into bile canaliculi was observed. Bile canaliculi (branching, ultrastructure and immunolocalization of the tight-junction associated protein ZO-1), were better differentiated in 18.5 than in 15.5-day-old foetal liver and in spheroid > sandwich > monolayer cultures. Our results show a parallelism between changes of the peroxisomal compartment and bile canalicular structure together with mrp2-mediated secretory function. Distinct polarization characteristics do not necessarily change simultaneously, suggesting different regulatory mechanisms.