DNA damage is believed to be the main cause of the antiproliferative effect of cisplatin, a cornerstone agent in anticancer therapy. However, cisplatin can be expected to react also with nucleophiles other than DNA. Using enucleated cells (cytoplasts) we demonstrate here that cisplatin-induced apoptotic signaling may occur independently of DNA damage. Cisplatin-induced caspase-3 activation in cytoplasts required calcium and the activity of the calcium-dependent protease calpain. It is known that calpain activation may be associated with endoplasmic reticulum (ER) stress, suggesting that the ER is a cytosolic target of cisplatin. Consistent with this hypothesis, cisplatin induced calpain-dependent activation of the ER-specific caspase-12 in cytoplasts as well as in intact cells. Cisplatin also induced increased expression of Grp78/BiP, another marker of ER stress. By contrast, the DNA-damaging topoisomerase II inhibitor etoposide did not induce apoptotic signaling in cytoplasts nor ER stress in intact cells. We have thus identified a novel mechanism of action of cisplatin. The results have implications for the understanding of resistance mechanisms as well as the unique efficiency of this drug.