This experiment was undertaken to determine the role of macrophage-derived nitric oxide (NO) in mediating lipopolysaccharide (LPS)-induced bone resorption by using an in vitro co-culture system and an in vivo model of infectious bone resorption. Our results demonstrated that LPS stimulated the expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-a mRNAs and nitrite synthesis in the J774 mouse macrophage cell line but not in the UMR-106 (rat) and MC3T3-E1 (mouse) osteoblast cell lines. Conditioned media (CM) from LPS-stimulated J774 triggered only low to moderate levels of iNOS mRNAs in MC3T3-E1 and a trivial effect in UMR-106. On the other hand, CM induced matrix metalloproteinase-1 (MMP-1) gene expression in both osteoblast cell lines. The NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA) did not alter this effect in MC3T3-E1 and UMR-106, whereas TNF-a antibody diminished the CM-induced MMP-1 gene expression in both cell lines. Interestingly, SNAP, a NO donor, although by itself is not a MMP-1 stimulator for UMR-106, augmented the TNF-alpha-stimulated MMP-1 mRNA production in UMR-106. In a J774/UMR-106 co-culture system, LPS stimulated significant MMP-1 gene expression in UMR-106, and this upregulation was abolished by L-NMMA and TNF-alpha antibodies. Immunohistochemical analysis in a rat model of infectious bone resorption (periapical lesion) showed co-distributions of iNOS+ macrophages and MMP-1+ osteoblasts around the osteolytic areas. Administration of L-NMMA markedly reduced the extent of bone loss and the percentage of MMP-1-synthesizing osteoblasts. These data suggest that NO derived from macrophages after LPS stimulation may enhance bone loss by augmenting the cytokine-induced MMP-1 production in osteoblasts.