The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.