Evidence in the literature implicating both Ras-like Ras (R-Ras) and intracellular Ca(2+) in programmed cell death and integrin-mediated adhesion prompted us to investigate the possibility that R-Ras alters cellular Ca(2+) handling. Chinese hamster ovary cells expressing the cholecystokinin (CCK)-A receptor were loaded with indo-1 to study the effects of constitutively active V38R-Ras and dominant negative N43R-Ras on the kinetics of the thapsigargin (Tg)- and CCK(8)-induced Ca(2+) rises using high speed confocal microscopy. In the absence of extracellular Ca(2+), both 1 microm Tg, a potent and selective inhibitor of the Ca(2+) pump of the intracellular Ca(2+) store, and 100 nm CCK(8) evoked a transient rise in Ca(2+), the size of which was decreased significantly after expression of V38R-Ras. At 0.1 nm, CCK(8) evoked periodic Ca(2+) rises. The frequency of these Ca(2+) oscillations was reduced significantly in V38R-Ras-expressing cells. In contrast to V38R-Ras, N43R-Ras did not alter the kinetics of the Tg- and CCK(8)-induced Ca(2+) rises. The present findings are compatible with the idea that V38R-Ras expression increases the passive leak of Ca(2+) of the store leading to a decrease in Ca(2+) content of this store, which, in turn, leads to a decrease in frequency of the CCK(8)-induced cytosolic Ca(2+) oscillations. The effect of V38R-Ras on the Ca(2+) content of the intracellular Ca(2+) store closely resembles that of the antiapoptotic protein Bcl-2 observed earlier. Together with reports on the role of dynamic Ca(2+) changes in integrin-mediated adhesion, this leads us to propose that the reduction in endoplasmic reticulum Ca(2+) content may underlie the antiapoptotic effect of R-Ras, whereas the decrease in frequency of stimulus-induced Ca(2+) oscillations may play a role in the inhibitory effect of R-Ras on stimulus-induced cell detachment and migration.