This study was designed to establish a direct homing assay using purified lineage-negative Sca-1-positive (Lin(-) Sca(+)) murine bone marrow cells and to evaluate the effects of cytokines on homing. C57BL/6 Lin(-) Sca(+) marrow stem cells were labeled with 5-(and 6)-carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and then injected by tail vein into untreated C57BL/6 mice. Marrow was harvested at various times after cell infusion and analyzed on a high-speed MoFlo cell sorter for fluorescent positive events, using a large event analysis, with at least 16 million total events analyzed. We have shown that homing of Lin(-) Sca(+) cells plateaus by 1 h, and at 3 h post-infusion is linear between 50,000 and 1,000,000 infused cells. This forms a base for a homing assay in which 250,000 CFDA-SE labeled Lin(-) Sca(+) marrow cells are infused and then recovered from marrow 3 h later, followed by a large-event fluorescence-activated cell sorting (FACS) analysis. We found that 7.45-9.32% of infused cells homed and that homing of stem cells cultured for 48 h in interleukin-3 (IL-3), IL-6, IL-11, and steel factor cultured cells was defective when compared to noncultured cells. Exposure of marrow stem cells to IL-3, IL-6, IL-11, and steel factor induces a stem cell homing defect, which probably underlies the engraftment defect previously characterized under these conditions.