We have developed an in vitro method for creating pulsatile flows to mimic coronary type flow patterns on a beat-to-beat basis. The flow is created by accelerating fluid loops about an axis, inducing relative wall motion. Using this technique, a variety of oscillating flow patterns can be generated and modulated. Such flow generation offers the potential to monitor sensitive, flow-dependent, biological parameters like thrombosis while minimizing background disturbances from pump action and circuit effects. We examined this potential by measuring the loop occlusion time for loops stented with stainless steel 7-9 NIR stents and stentless control loops.