Development of a Nanoindenter for In Situ Transmission Electron Microscopy

Microsc Microanal. 2001 Nov;7(6):507-517.

Abstract

In situ transmission electron microscopy is an established experimental technique that permits direct observation of the dynamics and mechanisms of dislocation motion and deformation behavior. In this article, we detail the development of a novel specimen goniometer that allows real-time observations of the mechanical response of materials to indentation loads. The technology of the scanning tunneling microscope is adopted to allow nanometer-scale positioning of a sharp, conductive diamond tip onto the edge of an electron-transparent sample. This allows application of loads to nanometer-scale material volumes coupled with simultaneous imaging of the material's response. The emphasis in this report is qualitative and technique oriented, with particular attention given to sample geometry and other technical requirements. Examples of the deformation of aluminum and titanium carbide as well as the fracture of silicon will be presented.