A hybrid system (hidden neural network) based on a hidden Markov model (HMM) and neural networks (NN) was trained to predict the bonding states of cysteines in proteins starting from the residue chains. Training was performed using 4136 cysteine-containing segments extracted from 969 non-homologous proteins of well-resolved 3D structure and without chain-breaks. After a 20-fold cross-validation procedure, the efficiency of the prediction scores as high as 80% using neural networks based on evolutionary information. When the whole protein is taken into account by means of an HMM, a hybrid system is generated, whose emission probabilities are computed using the NN output (hidden neural networks). In this case, the predictor accuracy increases up to 88%. Further, when tested on a protein basis, the hybrid system can correctly predict 84% of the chains in the data set, with a gain of at least 27% over the NN predictor.