Electron transfer (ET) from methylamine dehydrogenase (MADH) to amicyanin may be true or gated ET, depending upon the redox form of MADH. ET from the substrate-reduced aminoquinol form of MADH is gated, and the reaction rate is dependent on the presence of monovalent cations. This ET reaction has been studied in buffer free of monovalent cations. The reaction rate is orders of magnitude less than with saturating concentrations of monovalent cation. Analysis of the temperature dependence of this slow reaction, however, reveals that it is a true ET reaction. The rate of MADH reduction by substrate and the steady-state rate of substrate-dependent reduction of amicyanin by MADH were examined in different buffers. The results reveal that, in the steady state, the protonated methylammonium substrate performs the role previously attributed to monovalent cations in regulating the rate and mechanism of ET from MADH. The two putative cation binding sites previously observed in the crystal structure of MADH may now be assigned distinct roles, one as a catalytic substrate binding site and the other as a noncatalytic regulatory substrate binding site.