Genetic deletion of the tumor necrosis factor receptor p60 or p80 sensitizes macrophages to lipopolysaccharide-induced nuclear factor-kappa B, mitogen-activated protein kinases, and apoptosis

J Biol Chem. 2003 Jun 27;278(26):23390-7. doi: 10.1074/jbc.M213237200. Epub 2003 Apr 14.

Abstract

Whether deletion of tumor necrosis factor (TNF) receptor 1 or 2 affects lipopolysaccharide (LPS)-mediated signaling is not understood. In this report, we used macrophages derived from wild type (wt) mice and from mice null for the type 1 receptor (p60-/-), the type 2 receptor (p80-/-), or both (p60-/- p80-/-) to investigate the effect of these receptors on LPS-mediated activation of NF-kappaB, mitogen-activated protein kinases, and apoptosis. LPS activated NF-kappaB by 3-4-fold in wt cells but by 9-10-fold in p60-/-, p80-/-, and p60-/- p80-/- macrophages. These results correlated with the IkappaBalpha kinase activation, which is needed for NF-kappaB activation. LPS-induced cyclooxygenase-2 and inducible NO synthase proteins and NO production were maximum in p60-/- p80-/- macrophages and minimum in wt cells. LPS activated C-Jun N-terminal kinase, p38MAPK, and extracellular signal-regulated kinase in wt cells, but the levels were much higher in p60-/-, p80-/-, and p60-/- p80-/- cells. LPS-induced cytotoxicity, poly(ADP-ribose) polymerase cleavage, and annexin V staining were also highest in p60-/- p80-/- cells and lowest in wt cells. The difference in LPS signaling was unrelated to the expression of LPS receptors, CD14, or toll-like receptor 4. Overall, our studies indicate that deletion of either of the TNF receptors sensitizes the macrophages to LPS and provide evidence for cross-talk between TNF and LPS signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, CD / genetics
  • Antigens, CD / physiology
  • Apoptosis / drug effects
  • Cell Line, Transformed
  • Dose-Response Relationship, Drug
  • Lipopolysaccharides / pharmacology*
  • Macrophages / cytology
  • Macrophages / drug effects
  • Macrophages / metabolism*
  • Mice
  • Mice, Knockout
  • Mitogen-Activated Protein Kinases / drug effects
  • Mitogen-Activated Protein Kinases / metabolism
  • NF-kappa B / drug effects
  • NF-kappa B / metabolism
  • Nitric Oxide / biosynthesis
  • Receptor Cross-Talk
  • Receptors, Tumor Necrosis Factor / genetics
  • Receptors, Tumor Necrosis Factor / physiology*
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Signal Transduction

Substances

  • Antigens, CD
  • Lipopolysaccharides
  • NF-kappa B
  • Receptors, Tumor Necrosis Factor
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Nitric Oxide
  • Mitogen-Activated Protein Kinases