In the deeply shaded understorey of S.E. Asian rain forests the growth and survival of dipterocarp seedlings is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain in understorey plants. To test the sensitivity of photosynthesis and growth to variation in the pattern of dynamic irradiance, dipterocarp tree seedlings (Shorea leprosula and Hopea nervosa) were grown for 370 days under shaded forest light treatments of equal total daily photosynthetic photon flux density (approximately 3.3 mol m(-2) day(-1)), but characterised by either long flecks (LF) or short flecks (SF). Seedling growth was more than 4-fold greater under LF, compared with SF, in both species. Variation in the relative growth rates (RGR) and light saturated rates of photosynthesis (A(max)) were strongly positively correlated with the mean duration of sunflecks. Variation in RGR was strongly correlated with greater unit leaf rate growth, indicating that photosynthetic carbon gain per unit leaf area was greater under LF. The accumulation of starch in leaves over the diurnal period was 117% greater in both species under LF, compared with SF. Greater carbon gain in seedlings under LF is likely to have resulted from the combination of (1) greater A(max) (S. leprosula 35%, H. nervosa 40%), (2) more efficient dynamic photosynthesis, and (3) greater incident photosynthetic quantum yield, compared with seedlings receiving the SF irradiance treatment. The pattern of dynamic irradiance received by seedlings may significantly impact their growth and survival to a previously unrecognised extent, with important consequences for regeneration processes and hence forest structure and composition.