We analyzed 85 urine samples of the general German population for human specific metabolites of phthalates. By that we avoided contamination with the parent phthalates being omnipresent in the environment and for the first time could deduce each individual's internal exposure to phthalates without contamination. Determined were the secondary metabolites mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP) and mono(2-ethyl-5-oxo-hexyl)phthalate (5oxo-MEHP) of di(2-ethylhexyl)phthalate (DEHP) and the primary monoester metabolites of DEHP, di-noctylphthalate (DnOP), di-n-butylphthalate (DnBP), butylbenzylphthalate (BBzP) and diethylphthalate (DEP). Based on these internal exposure values we calculated the daily intake of the parent phthalates using urinary metabolite excretion factors. For DEHP we determined a median intake of 13.8 micrograms/kg body weight/day and an intake at the 95th percentile of 52.1 micrograms/kg body weight/day. The tolerable daily intake (TDI) value settled by the EU Scientific Committee for Toxicity, Ecotoxicity and the Environment (CSTEE) is 37 micrograms/kg body weight/day. Twelve percent of the subjects (10 out of 85 samples) within our collective of the general population are exceeding this value. Thirty-one percent of the subjects (26 out of 85 samples) had values higher than the reference dose (RfD) of 20 micrograms/kg body weight/day of the U.S. Environmental Protection Agency (EPA). For DnBP, BBzP, DEP and DnOP intake values at the 95th percentile were 16.2, 2.5, 22.1 and 0.42 micrograms/kg body weight/day respectively. Our results unequivocally prove that the general German population is exposed to DEHP to a much higher extent than previously believed. This is of greatest importance for public health since DEHP is not only the most important phthalate with respect to its production, use, occurrence and omnipresence but also the phthalate with the greatest endocrine disrupting potency. DEHP is strongly suspected to be a developmental and reproductive toxicant. We are not aware of any other environmental contaminant for which the TDI and RfD are exceeded to such an extent within the general population. The transgressions of the TDI and RfD for DEHP are accompanied by considerable ubiquitous exposures to DnBP and BbzP, two phthalates under scrutiny for similar toxicological mechanisms.