Synthesis, characterization, and theoretical studies of group 4 amido hydrotris(pyrazolyl)borate complexes

Inorg Chem. 2003 May 5;42(9):3008-15. doi: 10.1021/ic026063v.

Abstract

Titanium and zirconium amido complexes containing a hydrotris(pyrazolyl)borate (Tp) or hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) ligand TpM(NMe(2))(3) (M = Ti, 1; M = Zr, 2) and Tp*M(NMe(2))(3) (M = Ti, 3; M = Zr, 4) were prepared by the reactions of M(NMe(2))(3)Cl (M = Ti, Zr) with sodium hydridotris(pyrazol-1-yl)borate and potassium hydridotris(3,5-dimethylpyrazol-1-yl)borate, respectively. The structures of 1, 2, and 4.CH(2)Cl(2) were determined by X-ray diffraction and show octahedral coordination geometry around the metal centers. Density functional theory calculations at the B3PW91 level were performed to understand the orientations and the rotational behavior of amido ligands in these metal complexes.