Aim: To explore the anti-tumor immunity against CT26 colon tumor of the microencapsulated cells modified with murine interleukine-12 (mIL-12) gene.
Methods: Mouse fibroblasts (NIH3T3) were stably transfected to express mIL-12 using expression plasmids carrying mIL-12 gene (p35 and p40), and NIH3T3-mIL-12 cells were encapsulated in alginate microcapsules for long-term delivery of mIL-12. mIL-12 released from the microencapsulated NIH3T3-mIL-12 cells was confirmed using ELISA assay. Transplantation of the microencapsulated NIH3T3-mIL-12 cells was performed in the tumor-bearing mice with CT26 cells. The anti-tumor responses and the anti-tumor activities of the microencapsulated NIH3T3-mIL-12 cells were evaluated.
Results: Microencapsulated NIH3T3-mIL-12 cells could release mIL-12 continuously and stably for a long time. After the microencapsulated NIH3T3-mIL-12 cells were transplanted subcutaneously into the tumor-bearing mice for 21 d, the serum concentrations of mIL-12, mIL-2 and mIFN-gamma, the cytotoxicity of the CTL from the splenocytes and the NK activity in the treatment group were significantly higher than those in the controls. Moreover, mIL-12 released from the microencapsulated NIH3T3-mIL-12 cells resulted in a significant inhibition of tumor proliferation and a prolonged survival of tumor-bearing mice.
Conclusion: The microencapsulated NIH3T3-mIL-12 cells have a significant therapeutic effect on the experimental colon tumor by activating anti-tumor immune responses in vivo. Microencapsulated and genetically engineered cells may be an extremely versatile tool for tumor gene therapy.