A Grangeat-type half-scan algorithm for cone-beam CT

Med Phys. 2003 Apr;30(4):689-700. doi: 10.1118/1.1562941.

Abstract

Modern CT and micro-CT scanners are rapidly moving from fan-beam toward cone-beam geometry. Half-scan CT algorithms are advantageous in terms of temporal resolution, and widely used in fan-beam and cone-beam geometry. While existing half-scan algorithms for cone-beam CT are in the Feldkamp framework, in this paper we compensate missing data explicitly in the Grangeat framework, and formulate a half-scan algorithm in the circular scanning case. The half-scan spans 180 degrees plus two cone angles that guarantee sufficient data for reconstruction of the midplane defined by the source trajectory. The smooth half-scan weighting functions are designed for the suppression of data inconsistency. Numerical simulation results are reported for verification of our formulas and programs. This Grangeat-type half-scan algorithm produces excellent image quality, without off-mid-plane artifacts associated with Feldkamp-type half-scan algorithms. The Grangeat-type half-scan algorithm seems promising for quantitative and dynamic biomedical applications of CT and micro-CT.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, U.S. Gov't, P.H.S.
  • Validation Study

MeSH terms

  • Algorithms*
  • Brain / diagnostic imaging
  • Humans
  • Imaging, Three-Dimensional
  • Phantoms, Imaging
  • Radiographic Image Enhancement / methods*
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography, Spiral Computed / methods*