Candida dubliniensis is a newly described yeast species that is a close phylogenetic relative of C. albicans. Although it has been reported from different parts of the world, no detailed investigation of this species has been done in Saudi Arabia. The purpose of the present study was to identify C. dubliniensis isolates recovered from clinical specimens at a tertiary-care hospital in Riyadh, Saudi Arabia, and to determine the drug susceptibility profiles of those isolates. Over a period of 8 months, 823 germ tube- and chlamydospore-positive yeasts identified as C. albicans and recovered from different clinical specimens were screened for their ability to grow at 45 degrees C on Sabouraud dextrose agar. Isolates which failed to grow at 45 degrees C were presumptively identified as C. dubliniensis. The species identities were further confirmed by the production of pseudohyphae and chlamydospores on Staib agar and their inability to assimilate D-xylose and alpha-methyl-D-glucoside by using the API 20C AUX system. A total of 27 (3.3%) isolates were identified as C. dubliniensis. They were all recovered from 23 human immunodeficiency virus-negative patients. The prevalence of C. dublinensis in bronchoalveolar lavage (33.3%), oral (16.7%), and blood (16.7%) specimens was high. In addition, 33 isolates previously identified as C. albicans and preserved among our stock blood culture isolates were also recruited for the study. Of these, 5 isolates were found to be C. dubliniensis, thus making the total number of isolates identified as this species 32. Antifungal susceptibility testing of the C. dubliniensis isolates showed 100% sensitivity to amphotericin B, 97% sensitivity to each of fluconazole and ketoconazole, and 87.5% sensitivity to itraconazole. However, in contrast to other studies, the majority of the isolates (65.6%) showed high levels of resistance to flucytosine (MIC > 64 microg/ml). Further studies are warranted to investigate the cause of this unusually high rate of resistance to flucytosine of the C. dubliniensis isolates in this region.