During fasting most mammals preferentially utilize lipid reserves for energy while sparing protein reserves. This presents a potential problem for marine mammals that also depend on lipids as a major component of blubber, the primary thermoregulatory structure. Because of this dual function for lipid, rates of lipid and protein utilization should be closely regulated during the postweaning fast in northern elephant seals (Mirounga angustirostris). To quantify energy expenditure during the fast, we measured body mass and composition of 60 pups at 2.3+/-0.2 days and 55.9+/-0.3 days postweaning in 1999 and in 2000. Body condition differed significantly between years. At weaning, body mass (125.9+/-3.8 kg) and percentage lipid content (39.3+/-0.6% of body mass) in 2000 were significantly greater than body mass (115.2+/-3.1 kg) and percentage lipid content (35.8+/-0.6%) in 1999. In general, percentage lipid content increased with body mass, and fatter pups utilized lipid at relatively higher rates during the fast. Lipid fueled 85-95% and 88-98% of energy expended by pups in 1999 and 2000, respectively. Postweaning fast duration (32-78 days) was positively correlated with body mass and hence lipid content at weaning. This suggests that body composition at weaning influences lipid utilization patterns and ultimately the duration of the postweaning fast in northern elephant seal pups.