Crohn's Disease (CD) is a chronic inflammatory bowel disease (IBD) that can affect any portion of the gastrointestinal tract and can cause significant morbidity. A variety of animal models of both acute and chronic intestinal inflammation have been developed to investigate disease pathogenesis and novel treatment modalities. These include chemically induced, genetically manipulated and immune-mediated models of gut inflammation, each of which possesses similarities to human IBD and offers unique advantages for studying specific aspects of disease pathogenesis. However, the majority of these models are characterized by colitis and, unlike human CD, do not involve the small intestine. More recently, murine models of chronic ileal inflammation have been characterized that spontaneously develop and closely resemble human CD with regard to disease location, histologic features and clinical response to therapy. Two mouse models of experimental ileitis will be discussed in this review: the TNF DeltaARE and SAMP1/YitFc strains. Studies using these new models might provide important insight into the pathogenesis of human CD and test the efficacy of potential therapies to treat this devastating disease.