The adult dental pulp is innervated by sensory trigeminal axons and efferent sympathetic axons. Rat trigeminal ganglia extend neurites when co-cultivated in vitro with pulpal tissue explants, suggesting that pulpal cells secrete soluble molecules that stimulate the growth of trigeminal ganglion axons. In addition, cultured pulpal cells produce mRNAs for neurotrophins and glial cell line-derived neurotrophic factor-family members. These data suggest that neurotrophic factors are involved in the formation of a pulpal innervation. Here, we examine how pulpal cells and 3T3 fibroblasts overexpressing certain neurotrophic factors (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-4, glial cell line-derived neurotrophic factor or neurturin) influence survival and growth of single trigeminal ganglion neurones in vitro in quantitative terms. The results show that most of the neurotrophic factor-overexpressing fibroblasts induce similar neuronal soma diameters, but higher survival rates and neurite lengths compared with pulpal cells. With respect to neurite growth pattern, trigeminal ganglion neurones co-cultured with fibroblasts overexpressing nerve growth factor develop a geometry that is most similar to that seen in co-cultures with pulpal cells. We conclude that none of the fibroblasts overexpressing neurotrophic factors can fully mimic the effects of pulpal cells on trigeminal ganglion neurones, and that nerve growth factor promotes a neurite growth pattern most similar to the picture seen in co-cultures with pulpal cells.