There is increasing evidence that X chromosomes have an unusual complement of genes, especially genes that have sex-specific expression. However, whereas in worm and fly the X chromosome has a dearth of male-specific genes, in mice genes that are uniquely expressed in spermatogonia are especially abundant on the X chromosome. Is this latter enrichment true for nongermline, male-specific genes in mammals, and is it found also for female-specific genes? Here, using SAGE data, we show (1) that tissue-specific genes tend to be more abundant on the human X chromosome, (2) that, controlling for this effect, genes expressed exclusively in prostate are enriched on the human X chromosome, and (3) that genes expressed exclusively in mammary gland and ovary are not so enriched. This we propose is consistent with Rice's model of the evolution of sexually antagonistic alleles.