Brain atrophy as determined by quantitative MRI can be used to characterize disease progression in multiple sclerosis. Many studies have addressed white matter (WM) alterations leading to atrophy, while changes of the cerebral cortex have been studied to a lesser extent. In vivo, the cerebral cortex has been difficult to study due to its complex structure and regional variability. Measurement of cerebral cortex thickness at different disease stages may provide new insights into grey matter (GM) pathology. In the present investigation, we evaluated in vivo cortical thickness and its relationship to disability, disease duration, WM T2 hyper-intense and T1 hypo-intense lesion volumes. High-resolution MRI brain scans were obtained in 20 patients with clinically definite multiple sclerosis and 15 age-matched normal subjects. A novel method of automated surface reconstruction yielded measurements of the cortical thickness for each subject's entire brain and computed cross-subject statistics based on the cortical anatomy. Statistical thickness difference maps were generated by performing t-tests between patient and control groups and individual thickness measures were submitted to analyses of variance to investigate the relationship between cortical thickness and clinical variables. The mean overall thickness of the cortical ribbon was reduced in multiple sclerosis patients compared with controls [2.30 mm (SD 0.14) versus 2.48 mm (SD 0.11)], showing a significant main effect of group (controls versus patients). In patients, we found significant main effects for disability, disease duration, T2 and T1 lesion volumes. The visualization of statistical difference maps of the cortical GM thickness on inflated brains across the cortical surface revealed a distinct distribution of significant focal thinning of the cerebral cortex in addition to the diffuse cortical atrophy. Focal cortical thinning in frontal [2.37 mm (SD 0.17) versus 2.73 mm (SD 0.25)] and in temporal [2.65 mm (SD 0.15) versus 2.95 mm (SD 0.11)] brain regions was observed, even early in the course of the disease or in patients with mild disability. Patients with longstanding disease or severe disability, however, presented additionally with focal thinning of the motor cortex area [2.35 mm (SD 0.19) versus 2.74 mm (SD 0.15)]. We conclude that in vivo measurement of cortical thickness is feasible in patients suffering from multiple sclerosis. The data provide new insight into the cortical pathology in multiple sclerosis patients, revealing focal cortical thinning beside an overall reduction of the cortical thickness with disease progression.