We outline a strategy to relate normal cognitive processes to candidate genes. First, brain imaging is used to specify a cognitive process "attention" in terms of the neural networks involved. Next, evidence is presented showing that the operation of each network involves a dominant neuromodulator. Then we discuss development of a task designed to measure the efficiency of each network in normal individuals and consider evidence on the independence, reliability, and heritability of the networks. DNA from cheek swabs of subjects who performed the task are then used to examine candidate polymorphisms in genes related to the transmitters. We then examine the ability of these candidate alleles to predict the efficiency of relevant networks. This process has demonstrated that candidate genes are related to specific networks of attention to a greater degree than to overall performance as measured by reaction time and accuracy. These findings require replication and possible extension to other cognitive processes.