Bioartificial liver inoculated with porcine hepatocyte spheroids for treatment of canine acute liver failure model

Artif Organs. 2003 Jul;27(7):613-22. doi: 10.1046/j.1525-1594.2003.07140.x.

Abstract

The aim of this study was to evaluate a novel bioartificial system in a canine model of acute liver failure. An acute liver failure model in canines was induced by an end-side portocaval shunt combined with common bile duct ligation and transection. The bioartificial liver system, which utilized blood perfusion through a hollow fiber bioreactor from BIOLIV A3A inoculated with 1.0 - 3.1 x 1010 porcine hepatocyte spheroids, was developed for the treatment of acute liver failure. Sixteen acute liver failure model canines were divided between a group treated with bioartificial liver (n=8) and a control group (n=8) for 5 h. Blood alanine aminotransferase (ALT), alkaline phosphatase (AKP), total bilirubin (TBi), direct bilirubin (DBi), prothrombin time (PT), ammonia levels, and the ratio of branched chain to aromatic amino acids (Fischer's ratio) were determined. ALT, AKP, TBi, DBi, and ammonia levels were significantly elevated, PT was significantly prolonged, and Fischer's ratio decreased significantly in the canine model of the two groups on day 14 after operation compared to baseline. There were no significant differences between the two groups in laboratory data before treatment. In canines treated with the bioartificial liver system, ALT, AKP, TBi, DBi, and ammonia levels decreased significantly, PT was significantly shortened, Fischer's ratio was significantly elevated after treatment, and the survival rate by day 7 after treatment was 100%. In canines in the control group, on the other hand, there were no significant differences in ALT, AKP, TBi, DBi, PT, and ammonia levels between pretreatment and posttreatment, though these indices decreased to a slight degree after treatment. The survival rate by day 7 after treatment was 62.5% in the control group. Fischer's ratio decreased after treatment. ALT, AKP, TBi, DBi, PT, and ammonia levels in the bioartificial liver system group were lower, and Fischer's ratio and survival rate were higher than those in the control group after treatment. These results indicate that the novel bioartificial liver system we developed has a significant impact on the course of canine acute liver failure model and has potential advantages for clinical use in patients with acute liver failure.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Dogs
  • Female
  • Hepatocytes* / cytology
  • Liver Failure, Acute / physiopathology
  • Liver Failure, Acute / therapy*
  • Liver, Artificial*
  • Male
  • Spheroids, Cellular* / cytology
  • Swine
  • Swine, Miniature