Some G-protein-coupled receptors display constitutive activity, that is spontaneous activity in the absence of agonist: a proportion of the receptor population adopts a conformation that can bind and activate G proteins. Whereas this was mainly shown to occur with recombinant or pathologically mutated receptors, the physiological relevance of the process has remained debated. We have adressed this question in the case of the histamine H3 receptor, a presynaptic inhibitory receptor regulating histamine release in brain. Having identified a neutral antagonist and inverse agonists with variable intrinsic activity, we show that the native H3 receptor in brain displays high constitutive activity in vitro and, in vivo, controls the release of endogenous histamine. This implies that inverse agonists with high intrinsic activity should be preferred for therapeutic application as "cognitive enhancers" in several psychiatric disorders.