Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys

Psychopharmacology (Berl). 2003 Sep;169(3-4):234-9. doi: 10.1007/s00213-003-1533-8. Epub 2003 Jul 4.

Abstract

Rationale: Prepulse inhibition (PPI) of the acoustic startle reflex is a measure of sensorimotor gating, which occurs across species and is deficient in severe neuropsychiatric disorders such as schizophrenia. In monkeys, as in rodents, phencyclidine (PCP) induces schizophrenia-like deficits in PPI. In rodents, in general, typical antipsychotics (e.g. haloperidol) reverse PPI deficits induced by dopamine (DA) agonists (e.g. apomorphine), but not those induced by N-methyl- d-aspartate (NMDA) receptor antagonists [e.g. phencyclidine (PCP)], whereas atypical antipsychotics (e.g. clozapine) reverse PPI deficits induced by DA agonists and NMDA antagonists. However, some discrepancies exist with some compounds and strains of rodents.

Objectives: This study investigated whether a typical (haloperidol, 0.035 mg/kg) and an atypical (clozapine, 2.5 mg/kg) antipsychotic could be distinguished in their ability to reverse PCP-induced deficits in PPI in eight monkeys ( Cebus apella).

Methods: First, haloperidol dose was determined by its ability to attenuate apomorphine-induced deficits in PPI. Then, haloperidol and clozapine were tested in eight monkeys with PCP-induced deficits of PPI. Experimental parameters were similar to standard human PPI procedures, with 115 dB white noise startle pulses, either alone or preceded by 120 ms with a prepulse 16 dB above the 70 dB background noise.

Results: Clozapine reversed PCP-induced PPI deficits. In contrast, haloperidol did not significantly attenuate PCP-induced PPI deficits even at doses that significantly attenuated apomorphine effects.

Conclusions: In this primate model, clozapine was distinguishable from haloperidol by its ability to attenuate PCP-induced deficits in PPI. The results provide further evidence that PPI in nonhuman primates may provide an important animal model for the development of novel anti-schizophrenia medications.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Antipsychotic Agents / pharmacology*
  • Antipsychotic Agents / therapeutic use
  • Behavior, Animal
  • Cebus
  • Clozapine / pharmacology*
  • Clozapine / therapeutic use
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Drug Interactions
  • Dyskinesias / drug therapy
  • Excitatory Amino Acid Antagonists / pharmacology*
  • Female
  • Haloperidol / pharmacology
  • Neural Inhibition / drug effects*
  • Phencyclidine / pharmacology*
  • Reflex, Startle / drug effects
  • Schizophrenia / drug therapy

Substances

  • Antipsychotic Agents
  • Excitatory Amino Acid Antagonists
  • Phencyclidine
  • Clozapine
  • Haloperidol