To determine the mechanisms underlying increased aerobic power in response to exercise training in octogenarians, we studied mildly frail elderly men and women randomly assigned to an exercise group (n = 22) who participated in a training program of 6 mo of physical therapy, strength training, and walking followed by 3 mo of more intense endurance exercise at 78% of peak heart rate or a control sedentary group (n = 24). Peak O2 consumption (V(O2 peak)) increased 14% in the exercise group (P < 0.0001) but decreased slightly in controls. Training induced 14% increase (P = 0.027) in peak exercise cardiac output (Q), determined via acetylene re-breathing, and no change in arteriovenous O2 content difference. The increase in Q was mediated by increases in heart rate (P = 0.009) and probably stroke volume (P = 0.096). Left ventricular stroke work also increased significantly. In the men, the increase in V(O2 peak) was exclusively due to a large increase in peak Q (22%). In the women, the gain in V(O2 peak) was due to small increases in Q and O2 extraction from skeletal muscles. Pulse pressure normalized for stroke volume and arterial elastance during peak effort did not change with training. Controls showed no changes. The results suggest that, although frail octogenarians have a diminished capacity for improvement in aerobic power in response to exercise training, this adaptation is mediated mostly by an increase in Q during peak effort. Furthermore, Q likely plays a greater role in the adaptive increase in V(O2 peak) in old men than old women.