Brain asymmetry is a phenomenon well known for handedness and language specialization and has also been studied in motor cortex. Less is known about hemispheric asymmetries in the somatosensory cortex. In the present study, we systematically investigated the representation of somatosensory function analyzing early subcortical and cortical somatosensory-evoked potentials (SEP) after electrical stimulation of the right and left median nerve. In 16 subjects, we compared thresholds, the peripheral neurogram at Erb point, and, using MRI-based EEG source analysis, the P14 brainstem component as well as N20 and P22, the earliest cortical responses from the primary sensorimotor cortex. Handedness was documented using the Edinburgh Inventory and a dichotic listening test was performed as a measure for language dominance. Whereas thresholds, Erb potential, and P14 were symmetrical, amplitudes of the cortical N20 showed significant hemispheric asymmetry. In the left hemisphere, the N20 amplitude was higher, its generator was located further medial, and it had a stronger dipole moment. There was no difference in dipole orientation. As a possible morphological correlate, the size of the left postcentral gyrus exceeded that of the right. The cortical P22 component showed a lower amplitude and a trend toward weaker dipole strength in the left hemisphere. Across subjects, there were no significant correlations between laterality indices of N20, the size of the postcentral gyrus, handedness, or ear advantage. These data show that asymmetry of median nerve SEP occurs at the cortical level, only. However, both functional and morphological cortical asymmetry of somatosensory representation appears to vary independently of motor and language functions.