On the precision of the conditionally autoregressive prior in spatial models

Biometrics. 2003 Jun;59(2):317-22. doi: 10.1111/1541-0420.00038.

Abstract

Bayesian analyses of spatial data often use a conditionally autoregressive (CAR) prior, which can be written as the kernel of an improper density that depends on a precision parameter tau that is typically unknown. To include tau in the Bayesian analysis, the kernel must be multiplied by tau(k) for some k. This article rigorously derives k = (n - I)/2 for the L2 norm CAR prior (also called a Gaussian Markov random field model) and k = n - I for the L1 norm CAR prior, where n is the number of regions and I the number of "islands" (disconnected groups of regions) in the spatial map. Since I = 1 for a spatial structure defining a connected graph, this supports Knorr-Held's (2002, in Highly Structured Stochastic Systems, 260-264) suggestion that k = (n - 1)/2 in the L2 norm case, instead of the more common k = n/2. We illustrate the practical significance of our results using a periodontal example.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bayes Theorem*
  • Data Interpretation, Statistical*
  • Humans
  • Markov Chains
  • Models, Statistical*
  • Monte Carlo Method
  • Periodontal Attachment Loss / pathology
  • Periodontitis / drug therapy