Inbred mice differ in their abilities to control the growth of Mycobacterium tuberculosis in the lung and can as a result be regarded as either resistant or susceptible strains. In this study we report that the SWR mouse is both highly susceptible and in addition appears incapable of establishing a characteristic state of chronic disease after low-dose aerosol infection. In comparison to C57BL/6 mice, SWR mice were unable to contain the bacterial load in the lungs, resulting in progressive fatal disease. Histologic analysis of the lung tissue revealed evidence of a florid inflammatory cell response in the SWR mice leading to degeneration and necrosis and consolidation of a large percentage of the lung surface area. Digestion of infected lungs and analysis by flow cytometry demonstrated an initially similar but eventually higher number of lymphocytes accumulating in the SWR mice. Additionally, in contrast to the C57BL/6 mice, SWR mice had a significantly lower percentage of CD4 T cells in the lungs showing evidence of proliferation and positive intracellular staining for gamma interferon during the first two months of infection, and a lower percentage of both CD4 and CD8T cells exhibiting differentiation to an effector/memory phenotype during the first month of infection. We propose that further investigation of the SWR mouse may provide a new animal model for immunocompetent individuals apparently unable to effectively control the growth of M. tuberculosis in the lung.