Nuclear factor kappaB (NF-kappaB) plays an important role in the transcriptional regulation of genes involved in inflammation and cell survival. In this study, we demonstrated that NF-kappaB-dependent gene expression was inhibited by E1A in poly(ADP)-ribose polymerase-1 knock out (PARP-1 (-/-)) cells complemented with wild type PARP-1 after tumor necrosis factor alpha (TNFalpha) or lipopolysaccharide (LPS) treatment. PARP-1 and p300 synergistically coactivated NF-kappaB-dependent gene expression in response to TNFalpha and LPS. Furthermore, PARP-1 interacted directly with p300 and enhanced the interaction of NF-kappaB1/p50 to p300. The C terminus, harboring the catalytic domain of PARP-1 but not its enzymatic activity, was required for complete transcriptional coactivation of NF-kappaB by p300 in response to TNFalpha and LPS. Together, these results indicate that PARP-1 acts synergistically with p300 and plays an essential regulatory role in NF-kappaB-dependent gene expression.