We generated T-DNA insertions throughout the rice genome for saturation mutagenesis. More than 1,000 flanking sequences were mapped on 12 rice chromosomes. Our results showed that T-DNA tags were not randomly spread on rice chromosomes and were preferentially inserted in gene-rich regions. Few insertions (2.4%) were found in repetitive regions. T-DNA insertions in genic (58.1%) and intergenic regions (41.9%) showed a good correlation with the predicted size distribution of these sequences in the rice genome. Whereas, obvious biases were found for the insertions in the 5'- and 3'-regulatory regions outside the coding regions both at 500-bp size and in introns rather than in exons. Such distribution patterns and biases for T-DNA integration in rice are similar to that of the previous report in Arabidopsis, which may result from T-DNA integration mechanism itself. Rice will require approximately the same number of T-DNA insertions for saturation mutagenesis as will Arabidopsis. A database of the T-DNA insertion sites in rice is publicly available at our web site (http://www.genomics.zju.edu.cn/ricetdna).