Specific targeting of ovarian carcinoma cells using pegylated polyethylenimine (PEG-PEI) conjugated to the antigen binding fragment (Fab') of the OV-TL16 antibody, which is directed to the OA3 surface antigen, was the objective of this study. OA3 is expressed by a majority of human ovarian carcinoma cell lines. To demonstrate the ability of the PEG-PEI-Fab' to efficiently complex DNA, an ethidium bromide exclusion assay was performed. Comparison with PEG-PEI or PEI 25 kDa showed only minor differences in the ability to condense DNA. Since conjugation of Fab' to PEG-PEI might influence complex stability, this issue was addressed by incubating the complexes with increasing amounts of heparin. This assay revealed stability similar to that of unmodified PEG-PEI/DNA or PEI 25 kDa/DNA complexes. Complexes displayed a size of approximately 150 nm with a zeta potential close to neutral. The latter property is of particular interest for potential in vivo use, since a neutral surface charge reduces nonspecific interactions. Binding studies using flow cytometry and fluorescently labeled DNA revealed a more than 6-fold higher degree of binding of PEG-PEI-Fab'/DNA complexes to epitope-expressing cell lines compared to unmodified PEG-PEI/DNA complexes. In OA3-expressing OVCAR-3 cells, luciferase reporter gene expression was elevated up to 80-fold compared to PEG-PEI and was even higher than that of PEI 25 kDa. The advantage of this system is its specificity, which was demonstrated by competition experiments with free Fab' in the cell culture media during transfection experiments and by using OA3-negative cells. In the latter case, only a low level of reporter gene expression could be achieved with PEG-PEI-Fab'.