In a recent study we reported that CD27 is expressed on a subpopulation of human B lymphocytes and presented circumstantial phenotypic evidence that CD27 expression may be acquired late during B cell differentiation. Here we present functional data showing that, after in vitro stimulation, CD27+ but not CD27- B cells secrete large amounts of both IgM and IgG. Using double immunofluorescence staining of CD27 and IgD, three functionally different B cell subsets representing distinct stages of B cell differentiation can be isolated: 1) the CD27- IgD+ B cells, which do not secrete appreciable Ig; 2) the CD27+IgD+ B cells, which exclusively secrete IgM; and 3) the CD27+IgD- B cells, which comprise the IgG-producing cells. Furthermore, costimulation of CD27- B cells with low m.w. B cell growth factor, in the presence or in the absence of a CD40 mAb, does not induce these cells to become Ig-secreting cells. Although CD27- B cells hardly secrete Ig of any isotype in response to Staphylococcus aureus+IL-2, these cells proliferate vigorously and express the IL-2R alpha chain (CD25) under these stimulatory conditions. Furthermore, both CD27- and CD27+ B cells are capable of producing similar amounts of IL-6 and TNF-alpha. Taken together, these findings indicate that CD27 is a unique non-Ig surface marker discriminating naive from primed B lymphocytes. Furthermore, the capacity to proliferate and to secrete the B cell differentiation factors IL-6 and TNF-alpha already exists at an early B cell differentiation stage at which the cells lack CD27 expression and are not induced to produce Ig.