A study was conducted to examine the mechanism and strength of bonding between two bioactive ceramic plates in vivo. Rectangular plates (15 mm X 10 mm X 2 mm) of Bioglass, apatite-wollastonite-containing glass ceramic (designated A-W.GC), and two types of hydroxyapatite sintered at 900 degrees C and 1200 degrees C (designated HA900 and HA1200) were prepared. Two plates of the same materials tied together with silk thread were implanted subcutaneously into rats. The force required to detach the mutually bonded bioactive ceramic plates was measured 4, 8, 12, and 24 weeks after implantation. The interface between the two bonded plates was examined by SEM-EPMA and thin-film x-ray diffraction analysis. At 24 weeks after implantation, the mutual bonding of Bioglass and A-W.GC was stronger than that of the two HA types. SEM-EPMA and thin-film x-ray diffraction analysis of the bonded area of Bioglass and A-W.GC plates showed bonding zones with apatite in the margins, and a bonding zone with calcite in the center. The greater strength of bonding of Bioglass and A-W.GC plates compared with the two types of HA plate 24 weeks after implantation is explained by the wider bonding zone provided by the calcite layer formed in the center of the plates, which is considered to have been perfused with PO4-poor body fluids resulting from PO4 consumption for apatite formation in the margins.