Mechanism of skin morphogenesis. II. Retinoic acid modulates axis orientation and phenotypes of skin appendages

Development. 1992 Jul;115(3):839-52. doi: 10.1242/dev.115.3.839.

Abstract

The factors that determine the axial orientation and phenotypes of skin appendages were analyzed by studying the effect of retinoic acid (RA) on embryonic chicken skin explant cultures. With RA uniformly distributed in the culture media, the feather buds became smaller, were disoriented or were transformed into scale-like structures in a concentration-dependent manner (from 0.05-2.5 microM). With RA distributed as a gradient created by a RA-soaked anion exchange bead, a radial zone of inhibition with a rim of disoriented buds was observed. The new axis of the disoriented buds appeared to be determined by a combination of the original feather axis determining force and a new axial force pointing centrifugally away from the RA source. This observed result can be simulated with a computer model using a vectorial sum of different feather axial determination forces. The size of the inhibited zone is linearly correlated to the RA concentration and may be used to quantify the morphogenetic activity of retinoids. These effects are specific to developmental stages (Hamburg and Hamilton stage 31-34). Both all-trans and 13-cis RA have morphogenetic activity. Retinol has no effect and retinal has a small inhibitory effect but neither phenotypic transformation nor axial disorientation were observed. The antero-posterior gradient of homeoprotein XlHbox 1 in feather buds became diffusive after RA treatment. RA dissolves dermal condensations and the distribution of N-CAM is altered from an anterior localized pattern to a diffusive presence in the bud cores. Endogenous retinoids in developing skins show developmental stage-dependent changes both quantitatively and qualitatively. The results suggest that RA either is or can modulate the endogenous morphogen(s) that determine the orientation and phenotype of skin appendages, and that this morphogenetic pathway involves Hox genes and adhesion molecules.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Chick Embryo
  • Computer Simulation
  • Culture Techniques
  • Feathers / drug effects
  • Feathers / embryology
  • Feathers / ultrastructure
  • Gene Expression / drug effects
  • Genes, Homeobox / genetics
  • Immunohistochemistry
  • Microscopy, Electron, Scanning
  • Models, Biological
  • Morphogenesis / drug effects
  • Phenotype
  • Skin / embryology*
  • Skin / ultrastructure
  • Tretinoin / pharmacology*

Substances

  • Tretinoin