The Rh blood-group antigens are associated with human erythrocyte membrane proteins of approx. 30 kDa (the Rh30 polypeptides). Heterogeneously glycosylated membrane proteins of 50 and 45 kDa (the Rh50 glycoproteins) are coprecipitated with the Rh30 polypeptides on immunoprecipitation with anti-Rh-specific mono- and poly-clonal antibodies. We have isolated cDNA clones representing a member of the Rh50 glycoprotein family (the Rh50A glycoprotein). We used PCR with degenerate primers based on the N-terminal amino acid sequence of the Rh50 glycoproteins and human genomic DNA as a template and cloned and sequenced three types of PCR product of the expected size. Two of these products, Rh50A and Rh50B, gave the same translated amino acid sequence which corresponded to the expected Rh50 glycoprotein sequence but had only 75% DNA sequence similarity. The third product (Rh50C) contained a single base deletion, and the translated amino acid sequence contained an in-frame stop codon. We have isolated cDNA clones containing the full coding sequence of the Rh50A glycoprotein. This sequence predicts that it is a 409-amino acid N-glycosylated membrane protein with up to 12 transmembrane domains. The Rh50A glycoprotein shows clear similarity to the Rh30A protein in both amino acid sequence and predicted topology. Our results are consistent with the Rh30 and Rh50 groups of proteins being different subunits of an oligomeric complex which is likely to have a transport or channel function in the erythrocyte membrane. We mapped the Rh50A gene to human chromosome 6p21-qter, showing that genetic differences in the Rh30 rather than the Rh50 genes specify the major polymorphic forms of the Rh antigens.