Purpose: Tumors induce T-cell apoptosis as a mechanism of inhibiting antitumor immunity. Using coculture experiments, it has been shown that tumor lines stimulate T-cell apoptosis by a pathway involving a mitochondrial permeability transition and cytochrome c release. Activated T cells express abundant levels of Bcl-2, an antiapoptotic molecule that would be expected to confer resistance to such tumor-mediated killing. We examined the mechanism by which Bcl-2 is dysregulated in T cells exposed to the renal tumor line SK-RC-45, and we determined whether overexpressing Bcl-2 protects T cells from tumor-mediated apoptosis.
Experimental design: Activated T lymphocytes and Jurkat cells transfected or not transfected with Bcl-2 were exposed to SK-RC-45 for 48-72 h. After coculture, lymphocytes were analyzed for Bcl-2 expression using Western analysis and for tumor-induced apoptosis by terminal deoxynucleotidyl transferase-mediated nick end labeling. The role of SK-RC-45-stimulated caspase activation in degrading T-cell Bcl-2 was assessed using a pan-caspase inhibitor, as well as a specific inhibitor of caspase-9.
Results: The renal cell carcinoma cell line SK-RC-45 sensitizes peripheral blood activated T lymphocytes and Jurkat cells to apoptosis by a mechanism that involves degradation of the antiapoptotic protein Bcl-2. The SK-RC-45-induced modulation of lymphocyte Bcl-2 levels was largely caspase independent because pretreatment of T cells with pan-caspase inhibitor III or an inhibitor of caspase-9 had minimal or no effect on stabilizing the protein, although it did provide protection against apoptosis. Overexpression of Bcl-2 protected Jurkat cells from tumor-mediated killing.
Conclusions: Bcl-2 inhibition is a mechanism by which tumors may render lymphocytes sensitive to other tumor-derived, proapoptotic stimuli.