An effective method for the determination of gamma-hydroxybutyric acid (GHB) in human plasma is described that utilizes a simple liquid-liquid extraction procedure and gas chromatography-positive ion chemical ionization-mass spectrometry (GC-PCI-MS). The method has been used to study the stability of plasma GHB under several storage conditions. Following the extraction with acetonitrile, GHB and deuterated GHB (GHB-d(6)) were derivatized with N,O-bis[trimethylsilyl] trifluoroacetamide (BSFTA). After the separation on a capillary GC column, the derivatives were ionized with ammonia reagent gas and analyzed by MS. The lower limit of quantitation in 100 microL of plasma was 2.5 microg/mL, over a range from 2.5 to 250 microg/mL. The coefficients of variation did not exceed 3.9% and the mean measured concentrations did not deviate more than 8% from the target for both intra- and interassay precision and accuracy. Plasma GHB was found to be stable at -20 degrees C for up to 9 months, at room temperature for 48 h, and after 3 freeze/thaw cycles. It was also found to be stable in processed samples stored at room temperature for 5 days and for 15 days at -20 degrees C.