Mice with astrocyte-directed inactivation of connexin43 exhibit increased exploratory behaviour, impaired motor capacities, and changes in brain acetylcholine levels

Eur J Neurosci. 2003 Oct;18(8):2313-8. doi: 10.1046/j.1460-9568.2003.02971.x.

Abstract

Gap junctions mediate communication between many cell types in the brain. Gap junction channels are composed of membrane-spanning connexin (Cx) proteins, allowing the cell-to-cell passage of small ions and metabolites. Cx43 is the main constituent of the brain-spanning astrocytic gap junctional network, controlling activity-related changes in ion and glutamate concentrations as well as metabolic processes. In astrocytes, deletion of Cx43-coding DNA led to attenuated gap junctional coupling and impaired propagation of calcium waves, known to influence neuronal activity. Investigation of the role of Cx43 in behaviour has been impossible so far, due to postnatal lethality of its general deletion. Recently, we have shown that deletion of Cx30, which is also expressed by astrocytes, affects exploration, emotionality, and neurochemistry in the mouse. In the present study, we investigated the effects of the astrocyte-directed inactivation of Cx43 on mouse behaviour and brain neurochemistry. Deletion of Cx43 in astrocytes increased exploratory activity without influencing habituation. In the open field, but not in the elevated plus-maze, an anxiolytic-like effect was observed. Rotarod performance was initially impaired, but reached control level after further training. In the water maze, Cx43 deficient mice showed a steeper learning course, although final performance was similar between groups. Cx43 inactivation in astrocytes increased acetylcholine content in the frontal cortex of water maze-trained animals. Results are discussed in terms of altered communication between astrocytes and neurons, possible compensation processes, and differential effects of Cx30- and astrocyte-specific Cx43 deletion.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / analysis
  • Acetylcholine / metabolism*
  • Animals
  • Astrocytes / metabolism
  • Astrocytes / physiology*
  • Brain / anatomy & histology
  • Brain / metabolism*
  • Brain Chemistry
  • Choline / analysis
  • Chromatography, High Pressure Liquid / methods
  • Connexin 43 / antagonists & inhibitors
  • Connexin 43 / deficiency
  • Connexin 43 / genetics
  • Connexin 43 / metabolism*
  • Exploratory Behavior / physiology*
  • Glial Fibrillary Acidic Protein / metabolism
  • Grooming / physiology
  • Habituation, Psychophysiologic
  • Hydroxyindoleacetic Acid / analysis
  • Locomotion / physiology
  • Mice
  • Mice, Transgenic
  • Motor Activity / genetics
  • Motor Activity / physiology*
  • Psychomotor Performance
  • Retention, Psychology
  • Rotarod Performance Test / methods
  • Serotonin / analysis
  • Time Factors

Substances

  • Connexin 43
  • Glial Fibrillary Acidic Protein
  • 3,4-Dihydroxyphenylacetic Acid
  • Serotonin
  • Hydroxyindoleacetic Acid
  • Choline
  • Acetylcholine