Radiofrequency ablation of the left ventricle using an endocardially placed electrode is unable to reliably create transmural lesions even with active electrode cooling. To produce deeper radiofrequency lesions, the authors developed and tested a prototype intramural needle ablation catheter that had a distal 1.1-mm diameter straight needle that could be advanced 12 mm into the myocardium. Freshly excised hearts from eight male sheep were perfused and superfused with oxygenated ovine blood. Ablations were performed for 60 seconds with the prototype catheter and a conventional 5-mm irrigated tip ablation catheter at target temperatures of 90 degrees C and 50 degrees C, respectively. The ablation lesions were bisected and stained with blue tetrazolium to assess lesion geometry. The irrigated tip ablation catheter required significantly more power than the intramural needle ablation catheter (37.7 +/- 7.3 vs 6.4 +/- 2.1 W, P < 0.01). Intramural needle lesions were significantly deeper (12.5 +/- 3.0 mm vs 8.3 +/- 2.1 mm, P < 0.01) but less wide (3.9 +/- 1.1 mm vs 11.5 +/- 2.0 mm, P < 0.01) than irrigated tip lesions. There was a high incidence of crater formation (74%), popping (45%), and myocardial charring (29%) during irrigated tip ablation; these phenomena were not observed during intramural needle ablation. The intramural needle ablation catheter creates significantly deeper but narrower lesions without evidence of tissue boiling. This technology may be particularly useful for ablation of ventricular tachycardia originating from regions where tissue depth is increased, like the ventricular septum.