Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay

Anal Chem. 2003 Sep 15;75(18):4711-7. doi: 10.1021/ac0346813.

Abstract

A microfluidic device has been developed for the determination of insulin secreted from islets of Langerhans by a capillary electrophoresis competitive immunoassay. Online assays were performed by electrophoretically sampling anti-insulin antibody (Ab), fluorescein isothiocyanate-labeled insulin (FITC-insulin), and insulin from separate reservoirs and allowing them to mix as they traveled through a 4-cm reaction channel heated to 38 degrees C. From the reaction channel, samples were injected onto a 1.5-cm-long electrophoresis channel where the FITC-insulin and FITC-insulin-Ab complex were separated in 5 s using an electric field of 500 V/cm. Detection limits for insulin were 3 nM in this mode of operation. Assays could be collected at 15-s intervals with continuous sampling and online mixing for up to 30 min with no intervention. Relative standard deviation was 2-6% depending on the insulin concentration. Response time to a step change in insulin concentration was 30 s. For live cell monitoring, single islets were placed into a reservoir on the chip and fluid in the immediate vicinity was continuously sampled to detect insulin secretion from the islet. Monitoring of insulin secretion with electropherograms taken at 15-s intervals resolved secretory profiles characteristic of first- and second-phase insulin secretion. The method should be amenable to other cell or tissue types for measurements of release with high temporal resolution.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Electrophoresis / methods*
  • Hormones / metabolism*
  • Immunoassay / methods*
  • Islets of Langerhans / cytology
  • Islets of Langerhans / metabolism
  • Male
  • Mice

Substances

  • Hormones