The plasminogen activator/plasmin system represents a key component of the proteolytic machinery underlying angiogenesis. In this work, we investigated the effect of Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent that is currently in Phase III clinical trials, on tissue and urokinase plasminogen activator activities. We found that in vitro, Neovastat at 100 microg/ml markedly stimulates t-PA-mediated plasmin generation, while it slightly inhibits the generation of plasmin mediated by uPA. The stimulatory effect of Neovastat on t-PA activity was markedly increased by a heat treatment, resulting in a 15-fold increase in the rate of activation of plasminogen. Neovastat did not directly stimulate the activity of t-PA or plasmin towards exogenous substrates, suggesting that its effect requires the presence of plasminogen. Accordingly, kinetic analysis showed that Neovastat increases both the k(cat) of t-PA as well as its affinity for plasminogen by 10-fold. The stimulation of t-PA activity by Neovastat was also correlated with a direct interaction of Neovastat with plasminogen as monitored by the surface plasmon resonance technology. Overall, these results identify Neovastat as a potent stimulator of t-PA-dependent activation of plasminogen, further emphasizing its pleiotropic mechanism of action on several molecular events involved in angiogenesis.