Starting from first principles, we present a detailed analysis of the concept of single scattering of light by a small volume element filled with sparsely and randomly positioned particles. We first derive the formulas of the far-field single-scattering approximation, which treats the volume element as a single scatterer, and discuss its range of applicability, using for illustration exact T-matrix results for randomly oriented two-sphere clusters. Our second approach is to treat the volume element as a small cloud of particles and apply the so-called first-order-scattering approximation. We demonstrate that although the two approaches are based on somewhat different sets of assumptions, they give essentially the same result for the electromagnetic response of a sufficiently distant polarization-sensitive detector.