Elevated telomerase levels are found in many malignancies, offering an attractive target for therapeutic intervention and diagnostic or prognostic purposes. Here we describe the use of a novel nanosensor developed for rapid screens of telomerase activity in biological samples. The technique utilizes magnetic nanoparticles that, on annealing with telomerase synthesized TTAGGG repeats, switch their magnet state, a phenomenon readily detectable by magnetic readers. We tested the efficacy of different telomerase inhibitors in crude human and murine samples and show that phosphorylation of telomerase regulates its activity. High-throughput adaptation of the technique by magnetic resonance imaging allowed processing of hundreds of samples within tens of minutes at ultrahigh sensitivities. Together, these studies establish and validate a novel and powerful tool for rapidly sensing telomerase activity and provide the rationale for developing analogous magnetic nanoparticles for in vivo sensing.