Microtubule associated protein 2 (MAP-2) historically has been perceived primarily as a static, structural protein, necessary along with other cytoskeletal proteins to maintain neuroarchitecture but somewhat removed from the "mainstream" of neuronal response mechanisms. Quite to the contrary, MAP-2 is exquisitely sensitive to many inputs and recent investigations have revealed dynamic functions for MAP-2 in the growth, differentiation, and plasticity of neurons, with key roles in neuronal responses to growth factors, neurotransmitters, synaptic activity, and neurotoxins. These discoveries indicate that modification and rearrangement of MAP-2 is an early obligatory step in many processes which modify neuronal function.